

CMS Silicon Strip Module Production at SiDet

U.S. CMS Si-Tracker Group

Fermilab

A. Ronzhin, K. Sogut, L. Spiegel, S. Tkaczyk

Kansas State University

T. Bolton, W. Kahl, R. Sidwell, N. Stanton

University of California, Riverside

P. Gartung, G. Hanson, G. Pasztor

University of California, Santa Barbara

- A. Affolder, S. Burke, C. Campagnari, A. Gupta, D. Hale, J. Incandela,
- S. Kyre, S. Levy, C. Mills, S. Stromberg, R. Taylor, D. White

University of Illinois, Chicago

E. Chabalina, C. Gerber, T. Ten

University of Kansas

P. Baringer, A. Bean, L. Christofek, D. Coppage

University of Rochester

- R. Demina, R. Eusebi, E. Halkiadakis, S. Korjenevski, A. Hocker,
- P. Tipton

CMS Tracker

TOB Module Components

- TOB consists of 5,208 two sensor modules (plus 5% spares).
- The first two TOB layers contain 540 stereo modules.
- ST sensors are 500μ thick and come in two pitches:
 122μ (6 chip) and 183μ (4chip).

Rods

TOB Production Cycle

Wire bond

Thermal cycle and

pulse-test hybrids

Gantry makes modules.

Final pinhole test on ARC

24 hour Thermal cycling

Modules test on ARC

Assemble rods from modules

Rod burn-in

Rods shipped to CERN

L. Spiegel, SiDet Liaison, October 2003

TOB Layers

Layer #	Avg. radius		Total # of modules				Total # of APVs
TOB1	608	42	504	4 + 4	183	183	4032
TOB2	692	48	576	4 + 4	183	183	4608
TOB3	780	54	648	4	183	-	2592
TOB4	868	60	720	4	183	-	2880
TOB5	965	66	792	6	122	-	4752
TOB6	1080	74	888	6	122	-	5328

- FNAL and UCSB have been set up to have roughly equal production capacity.
- UCSB has recently agreed to take over the bonding of TOB hybrids (pitch adapter to APV bonds).
- We are discussing with the Tracker community the possibility of bonding additional hybrids (TEC and TOB) at FNAL and also sharing with UCSB responsibility for some additional TEC modules.

Robotic Assembly

- CMS has mandated the use of robots for module assembly.
 - Provides some uniformity and allows the use of common software (Aerotech MMI and LabVIEW.
 - Gantry centers in Bari,
 Brussels, CERN, FNAL, Lyon,
 Perugia, and UCSB.
 - About 1 hour to assembly 3
 TOB modules.
- Picture shows FNAL gantry in Lab D clean room.

Aerotech Gantry Robot System

Module Encapsulation

- Module shipping experiences have shown that sensors can flex significantly resulting in broken wire bonds.
- A silicone compound will be applied to the backside of the modules at the seams.
- Above pictures show semi-automated application using a dispensing station in Lab A.

Wire Bonding

- Each site will need to make over 3 million wire bonds for the TOB modules.
- At peak production will need to bond 9 modules per work day.
- UCSB has agreed to bond all TOB hybrids and FNAL is exploring the possibility of bonding TEC hybrids (or a mixture of the two).

Module ARC Testing

- APV Readout Controller (ARC) systems used for fast testing of hybrids and modules.
- ARC testing at FNAL will take place primarily in the Lab D clean room.
- Testing includes IV measurements, noise measurements, and led illumination of the sensors.

Module Long-Term Testing

- Vienna box holds up to 10 modules.
- Peltier elements used for heating and cooling.
- All modules will be thermal cycled and then re-tested on an ARC system.
- LT system uses CMS DAQ components.
- System will be transferred to Lab C clean room.

Rod Burn-in

Recently delivered Rochester rod burn-in chest freezer.

- 688 rods will be assembled, tested, and shipped to CERN.
- Each rod consists of 6

 (12) axial (stereo)
 modules.
- Rods will be thermal cycled for 72 hours using CMS DAQ and C₆F₁₄ coolant.
- Rod work at FNAL will be done in the Lab C clean room. Waiting on post-RunIIb layout decisions!

Production Profile

- At peak production we will be building 9 modules per work day at FNAL and UCSB.
 - This implies that hybrid testing, module bonding, module ARC testing, module LT, and rod fast testing and burn-in are all in balance.
- Recently UCSB received the first functional rod.

Technical Support at SiDet

- During peak production (=9 TOB modules per work day)
 the following FTE positions will be required
 - Module assembly (2)
 - Wire bonding (1)
 - Hybrid and module ARC testing (1)
 - Long-Term testing, rod assembly, rod fast testing, rod burn-in (2)
 - Receiving, inspection, database, shipping (1)
 - Module encapsulation (0.5?)
 - Optical inspection (0.1?)
- Of course due to vacations, shutdowns, and other reasons, many people will need to trained for these jobs.
- Additional work hybrid bonding and TEC module production – would increase the first 3 categories.

Present Status

- Both FNAL and UCSB have built about 50 modules and UCSB has recently completed a few stereo modules.
- Module production has been paced by the delivery of hybrids and this has recently experienced a setback due to connector problems.

Possible Additional Projects at FNAL

- Bonding ~5,000 TEC (or TOB) hybrids and testing final assemblies
 - One microbonder FTE for about one year.
- TEC rings 6 and 7
 - About 2,000 modules
 - Similar in size to TOB modules
 - Would require a second robot

Both of these projects are presently under discussion.